Select your language

Expansion Valves

 

Expansion Valves

 

 

- Publicidad -

 

Válvulas de Expansión Expansion Valves Operation and

Thermostatic expansion valves are developed to regulate the injection of liquid refrigerant into evaporators. This coolant injection will always be regulated by a thermostatic element that is located at the top of the expansion valve which is controlled according to the reheating of the refrigerant.

There is a wide variety of thermostatic expansion valves, e.g. R-22, R 404-A, R-717 (ammonia). With balanced port, with MOP load. In all of them the objective is to deliver the maximum efficiency of the evaporator with adequate overheating.

The first thing is to analyze and know the operation of the expansion valve: it consists of a thermostatic element (1) separated from the body by means of a membrane, the thermostatic element is in contact with the bulb (2) through a capillary tube, a body with a seat and hole (3) and a spring or spring.

image Operation

P1: the pressure of the bulb acting at the top of the membrane and in the direction of opening the valve.

P2: the pressure of the evaporator, which influences the bottom of the membrane and the direction of closure of the valve.

- Publicidad -

P3: the force of the spring, which influences the bottom of the membrane and the only variable that is controllable by the technician.

When the valve regulates, there is a balance between the pressure of the bulb at the top of the membrane and against it will have the pressure of the evaporator and that of the spring, this in order to find the most suitable overheating of operation.

Overheating

The concept of overheating is the heat added to the steam after vaporization in the expansion valve. This can be measured in the place where the bulb is which is the suction pipe. The difference between the temperature of the thermometer and the evaporation pressure, translated to the temperature that corresponds to it, the result will be the overheating in the evaporator, which is designed to operate with a reheating range of 5 ° C. To obtain total overheating it is enough to change the thermometer to the end of the suction pipe, 30 centimeters before the compressor, and take the suction pressure to the compressor inlet. The difference in temperature will be the total overheating which should not be greater than 15 ° C. It is very important to clarify that these measurements should be made when the chamber temperature has already been obtained, if for some reason the desired temperature is not reached, the thermal balance or probable plugging due to dirt and / or humidity in the cooling system must be checked well.

image

image

- Publicidad -

Overheating serves to ensure that the liquid refrigerant will be evaporated in its entirety in the evaporator. But there are situations where you must modify the overheating adjustment, which can be done when you have distances greater than 15mts, in this condition you can reduce the overheating by turning the screw against the hands of the clock. It is recommended no more than a 360° turn in order to take care of the compressor, remembering that 90% of the cooling of the hermetic compressors is given by the suction gas. On the other hand, if the total overheating is very low, it will have to be increased and this is achieved by turning the screw in favor of the hands of the clock. It should be noted that the presence or absence of ice frost in a suction pipe does not indicate or guarantee the physical condition of the refrigerant.

image Valves with external pressure matching

If liquid distributors are used, expansion valves with external pressure equalization should always be used.

The use of liquid distributors usually causes a pressure drop of 14.7 psig in the distributor and in the distribution tubes.

Valves of this type should always be used in refrigeration installations with large plate evaporators or heat exchangers, where the pressure drop will be higher than the pressure corresponding to 2°C.

MOP loaded valves

MOP load valves are normally used in manufactured equipment, where a limitation of the suction pressure is desired at the time of commissioning, such as in the transport sector and in air conditioning installations.

Mop expansion valves have a very small amount of load on the bulb.

This means that the valve or element has to have a higher temperature than the bulb. Otherwise, the load may migrate from the bulb to the element and prevent the expansion valve from operating.

MOP charging means a limited amount of liquid charge in the bulb. The acronym "MOP" stands for Maximum Operation Pressure and is the highest allowed suction/evaporation pressure in suction/evaporation pipes.

The charge will have evaporated when the MOP point is reached. Gradually, as the suction pressure increases, the expansion valve begins to close at about 4/5 psig below the MOP point. It closes completely when the suction pressure is equal to the MOP point.

MOP is also sometimes called "Motor Overload Protection".

How to select the expansion valve

The following data are important for the selection of the expansion valve:

• Pressure drop through the valve

• Internal or external pressure matching

• Refrigerant

• Evaporator capacity

• Evaporation pressure

• Condensation pressure

The thermostatic element is equipped with a laser mark on the top of the membrane. The code indicates the refrigerant for which the valve is designed:

L = R410A

N = R134a

S = R404A/ R507

X = R22

Z = R407C

This mark indicates the type of valve (with code number), evaporation temperature range, MOP point, refrigerant and maximum operating pressure, PS/MWP

Identification

The hole assembly for T2 and TE2 is marked with the size of the hole (e.g. 06).

The number of the hole assembly is also indicated on the packaging cover.

The expansion valve should be installed in the liquid pipe, in front of the evaporator, and its bulb attached to the suction pipe as close as possible to the evaporator.

In case there is external pressure compensation, the compensation pipe shall be connected to the suction pipe immediately after the bulb.

image Installation

The best mounting position of the bulb is in a horizontal suction pipe, in a position between one and four o'clock clock.

The location depends on the outer diameter of the pipe.

Note:

The bulb should never be mounted on the bottom of a suction pipe, due to the possibility that the existence of oil at the bottom of the pipe produces false signals.

The bulb must be able to measure the temperature of the reheated suction steam and therefore must not be positioned in such a way that it is subjected to foreign sources of heat/cold.

If the bulb is subjected to hot drafts, its insulation is recommended.

The bulb should not be mounted behind a heat exchanger, as in this position it will give false signals to the expansion valve.

Authors:

See original.

Intelligent Cooling Drives Efficiency and Sustainability in Data Centers

Intelligent Cooling Drives Efficiency and Sustainability in Data Centers

International. As technology infrastructure expands to sustain the growing demand for data, so does its environmental impact. Data centers, essential to global digital operations, face the challenge...

High-precision logistics: the cold chain that saves lives in the Mexican health system

High-precision logistics: the cold chain that saves lives in the Mexican health system

Mexico. High-precision medical logistics has established itself as a strategic component in the health sector, where a minimum thermal deviation can represent millions of dollars in losses or, even...

Technical Training: Honeywell Hosts Workshop on New Generation of Solstice Refrigerants

Technical Training: Honeywell Hosts Workshop on New Generation of Solstice Refrigerants

International. This Thursday, June 12, 2025, Honeywell will hold the first session – in virtual format – of the training workshop "Solstice Refrigerants: The New Generation of Refrigerants with Low...

Cleveland Controls Launches Universal Adjustable Air Pressure Switch for Multiple Applications

Cleveland Controls Launches Universal Adjustable Air Pressure Switch for Multiple Applications

United States. Cleveland Controls announced the launch of its new ANS2 series of air pressure switches, a universal, field-adjustable device developed for a wide range of applications in residential...

Trane Renews Leadership in Mexico and Latin America with Three Strategic Appointments

Trane Renews Leadership in Mexico and Latin America with Three Strategic Appointments

Mexico. Trane announced a key restructuring of its management team for Mexico and Latin America. The changes are part of a strategy to consolidate its presence in key markets and strengthen its...

Hisense launches global

Hisense launches global "Live in the moment" campaign as part of the 2025 FIFA Club World Cup

Panama. On the occasion of its participation as an official partner of the 2025 FIFA Club World Cup, the international brand Hisense presented its new campaign "Live the moment", an initiative...

Samsung acquires FläktGroup reinforces its commitment to the HVAC business

Samsung acquires FläktGroup reinforces its commitment to the HVAC business

Latin America. Samsung Electronics announced the acquisition of FläktGroup, a global provider of HVAC solutions, for approximately $1.62 billion, in a transaction that strengthens its expansion...

LG to hold its HVAC Leaders Summit in Latin America in July as part of its global strategy

LG to hold its HVAC Leaders Summit in Latin America in July as part of its global strategy

Latin America. The initiative seeks to strengthen alliances and promote sustainable solutions in heating, ventilation and air conditioning.

Indoor climate and well-being: the new standard of comfort in modern living

Indoor climate and well-being: the new standard of comfort in modern living

Mexico. In a context of extreme heat and rising sleep disorders, thermal comfort and indoor air quality are positioned as key factors in the design of well-being-oriented homes.

Weber State University Relies on Mitsubishi Electric Heat Pump Technology to Achieve Carbon Neutrality

Weber State University Relies on Mitsubishi Electric Heat Pump Technology to Achieve Carbon Neutrality

United States. Mitsubishi Electric Trane HVAC US LLC (METUS) shared a success story in energy efficiency implemented by Weber State University, an institution committed to environmental...

Free Subscription
Remember Me
SUBSCRIBE TO OUR NEWSLETTER
DO YOU NEED A SERVICE OR PRODUCT QUOTE?
LASTEST INTERVIEWS
SITE SPONSORS










LASTEST NEWSLETTER
Ultimo Info-Boletin