Uno de los principales desafíos de todo proyectista de sistemas de refrigeración es, sin duda, la selección de la tubería para un correcto desempeño del sistema.
por Alonso Amor*
Para realizar esta tarea uno de los parámetros que debe ser considerado es la pérdida de carga generada a lo largo de todo el circuito frigorífico. La pérdida de carga (o caída de presión) es el diferencial de presión medido en dos diferentes puntos del sistema.
Existen puntos donde una caída de presión es necesaria como es el caso de la válvula de expansión, sin embargo, un diferencial de presión en otros componentes no es deseable debido a que dichas perdidas ocasionarán un desempeño ineficiente del sistema generando un consumo energético mayor para el usuario final.
Las caídas de presión son totalmente inevitables, ya que todo fluido desplazándose dentro de un volumen delimitado tendrá un diferencial de presión ocasionado por la resistencia del medio representada por la fricción, siendo que, cuanto mayor sea la longitud de la tubería mayor será este diferencial. La regla es simple, una mayor velocidad implica una mayor pérdida y un diámetro menor mayor velocidad.
Si aplicamos estrictamente el enunciado anterior, la tubería con un diámetro mayor siempre será la mejor, ya que así tendremos menores velocidades y menores pérdidas, ocasionando una eficiencia mayor. Pero cuando comenzamos a pensar desde un punto de vista práctico, cuanto mayor el diámetro, mayor es la demanda de fluido refrigerante y con esto llegamos a nuevos problemas ya que una carga excesiva es siempre una complicación para el control de líquido, además, desde la óptica del usuario final, la utilización de diámetros mayores siempre será una inversión mayor y esto puede inviabilizar la instalación.
Se debe tener presente que dentro de una tubería no es solamente refrigerante lo que está circulando, existe también una porción de aceite que en combinación con el refrigerante deberá regresar con seguridad al compresor. Para conseguir esto debemos garantizar velocidades suficientemente altas que promuevan un arrastre correcto del aceite, siendo que, altas velocidades traerán como consecuencia mayores caídas de presión.
Debido a la complexidad del problema, no existe una ecuación o método exacto que otorgue como resultado el diámetro de tubería que debe ser utilizado en cada uno de los segmentos del circuito, es por esto que el proyectista debe conocer los principios de selección y aplicarlos de manera correcta buscando siempre un adecuado funcionamiento del sistema.
Línea de succión
La línea de succión es el segmento del ciclo en donde es más crítica la correcta selección de la tubería ya que toda caída de presión en este trecho generará una mayor relación de compresión afectando directamente a la eficiencia del sistema. La selección de esta línea debe basarse en la caída de presión equivalente a 1,1 °K tomando como referencia la temperatura de evaporación del sistema (ver tabla 1).
La tubería debe seguir el camino más directo posible evitando la instalación de curvas innecesarias que pueden generar una pérdida de presión adicional. De igual manera deben ser evitados todos aquellos componentes que no sean totalmente necesarios para el funcionamiento de la aplicación, como es el caso de válvulas reguladoras de presión o filtros no especificados.
Tabla 1: Caída de presión equivalente a 1,1 K en diferentes temperaturas de evaporación
La línea de succión es también el punto en donde el proyectista debe de ser más cuidadoso con la relación existente entre caída de presión y velocidad del fluido ya que el refrigerante en estado gaseoso posee una densidad baja dificultando el arrastre de aceite. Velocidades típicas para el dimensionamiento de la línea de succión van de los 5 hasta los 10 m/s, siendo que en trechos ascendentes la velocidad nunca deberá de ser menor que 7,5 m/s.
En sistemas en donde la línea de succión sea muy larga existirán situaciones en las cuales será necesario tomar una decisión entre mantener poca caída de presión con bajas velocidades, o aumentar la velocidad (con mayores pérdidas) buscando un mejor arrastre del aceite. En estas situaciones siempre debe ser seleccionada la tubería que ofrezca una velocidad adecuada, mismo que la eficiencia sea castigada, ya que será siempre mejor tener un sistema un poco menos eficiente con un correcto retorno de aceite que un sistema con baja caída de presión sin lubricación o problemas en la transferencia de calor.
Línea de descarga
En la refrigeración comercial muchas veces no es necesario que el proyectista realice un cálculo de pérdida de carga en la línea de descarga ya que dicha línea es dimensionada por el fabricante dentro del conjunto de la unidad condensadora. Además, en estos sistemas acoplados la longitud de la línea no es considerable por lo que las perdidas de presión o arrastre de aceite no serán un problema.
Sin embargo, existen sistemas con condensador remoto en donde es necesario realizar un análisis de caída de presión. Como regla general, la tubería de estos sistemas debe ser dimensionada para una pérdida de presión no mayor que 5 psi. Velocidades típicas para la selección de la línea de descarga van de los 10 hasta 13 m/s. Se debe tener especial atención para nunca seleccionar diámetros que generen velocidades superiores a 15 m/s ya que en este punto la línea puede comenzar a presentar vibración excesiva y altos niveles de ruido.
Línea de líquido
En contraste con las otras líneas, la línea de líquido es un segmento del sistema de refrigeración que no transporta (o no debería) refrigerante en estado gaseoso. Por este motivo la velocidad del fluido no es un factor primordial para el correcto funcionamiento de la instalación ya que el aceite se mezcla completamente con el refrigerante líquido.
La función de la línea de líquido es abastecer a la válvula de expansión con un flujo constante de refrigerante sub-enfriado. Para realizar esta tarea, es necesario que durante el paso del fluido en la tubería no exista una condición de saturación producto de caídas de presión. La saturación de refrigerante en la línea de líquido ocasionará un desempeño deficiente del sistema como secuencia de una operación deficiente de la válvula de expansión.
Comúnmente los trechos horizontales de la tubería no son un problema en términos de caída de presión, por lo contrario, los segmentos ascendentes necesitan de especial atención. Altas pérdidas de carga en segmentos ascendentes son inevitables, la tabla 2 muestra la caída de presión por metro de tubería ascendente. Para evitar un desempeño pobre del sistema debe garantizarse que el sub-enfriamiento en la línea de líquido sea suficiente para que mismo con pérdida de carga, el fluido no sufra saturación.
Tabla 2: Caída de presión por metro de tubería ascendente para distintos refrigerantes
El sub-enfriamiento de cada sistema es variable dependiendo de cada aplicación, condensadores enfriados por aire ofrecen comúnmente un sub-enfriamiento de 3 hasta 6 °K. Si debido a una alta caída de presión el sistema necesita de sub-enfriamiento adicional, deberá ser acoplado otro método sub-enfriamiento auxiliar. La tabla 3 muestra el cambio de presión de saturación por cada grado de sub-enfriamiento.
Tabla 3: Cambio de presión de saturación por cada grado de sub-enfriamiento para distintos refrigerantes basados en una temperatura de líquido de 40°C
Por ejemplo, una tubería de líquido ascendente de 7 metros utilizando R404A tendrá una caída de presión de 9,24 psi (ver tabla 2), si el condensador otorga un sub-enfriamiento de 3 °K el sistema soporta 21 psi de caída de presión sin generar una condición de saturación (ver tabla 3). En este caso no será necesario ningún otro método de sub-enfriamiento adicional.
Otros factores como filtros sucios, exceso de válvulas de servicio o válvulas solenoides deben de ser evitados para no generar una caída de presión excesiva, que traerá saturación del fluido también conocida como “flash gas”.
En términos de velocidad del refrigerante, sólo debe ser verificado que la línea de líquido sea proyectada con valores inferiores a 1,5 m/s para evitar el fenómeno conocido como golpe de ariete, el cual puede presentarse después del accionamiento de válvulas solenoides.
Recomendaciones generales
Para un correcto funcionamiento del sistema deben ser considerados los siguientes factores en la selección de la tubería.
- Utilizar siempre tubería de cobre tipo L o K
- Nunca seleccionar los diámetros de las líneas tomando como base las conexiones de la unidad condensadora o evaporador
- Si se utilizan tablas de selección, verificar que las condiciones de cálculo de las mismas estén de acuerdo con el sistema que está siendo proyectado
- Buscar siempre que la tubería tenga la trayectoria más directa posible
- Evitar la utilización de accesorios no necesarios
*Alonso Amor – coordinador de ingeniería de aplicación de Heatcraft Brasil.

Building Automation Days 2025 en Bogotá marca un hito para el estándar KNX en Latinoamérica
Colombia. Con más de un centenar de asistentes y la participación de seis expositores de alto perfil, Building Automation Days by KNX LATAM, edición Colombia, se consolidó como el evento más...

Tecnología Design Envelope llega al segmento de 750 gpm en bombas contra incendios
Canadá. En respuesta a las crecientes demandas del sector de protección contra incendios, Armstrong Fluid Technology anunció la expansión de su línea de bombas Vertical-In-Line con la incorporación...

Greenheck lanza nuevo modelo RV-220 y amplía su línea de sistemas dedicados de aire exterior
Estados Unidos. La empresa Greenheck anunció la incorporación del modelo RV-220 a su línea de sistemas dedicados de aire exterior (DOAS), una solución que responde a la creciente demanda de equipos...

Embraco entra al mercado HVAC con nuevos compresores scroll y apunta a convertirse en proveedor integral
Brasil. Embraco anunció su entrada oficial al mercado de calefacción, ventilación y aire acondicionado (HVAC) tras la adquisición de la empresa especializada Xecom, y el lanzamiento de una nueva...

GRUPO SIGMAN y Carrier-VRF refuerzan la capacitación técnica del sector HVAC en Ecuador
Ecuador. Una semana intensiva de formación técnica y comercial reunió a actores clave del sector HVAC en Quito y Guayaquil, gracias a la iniciativa conjunta de GRUPO SIGMAN y Carrier-VRF, empresa...

AHR Expo México 2025 regresa a Monterrey con su edición más ambiciosa
México. El evento regresa este año a Monterrey con una edición sin precedentes. La exposición, dedicada a las soluciones de aire acondicionado, ventilación, calefacción, refrigeración y filtración,...

Fujitsu lanza nueva manejadora de aire AIRSTAGE de posiciones múltiples con refrigerante R-32
Estados Unidos. Fujitsu General America anunció el lanzamiento de su nueva unidad manejadora de aire de posiciones múltiples AIRSTAGE (MPAHU), diseñada para brindar mayor flexibilidad de aplicación...

Proyecto de climatización en la Universidad Javeriana, finalista en los CALA Awards 2025 en la categoría HVAC
El sistema HVAC instalado en el edificio de la Facultad de Ciencias de la Pontificia Universidad Javeriana, en Bogotá, fue seleccionado como finalista en la categoría HVAC de los CALA Awards 2025....

Proyecto Concord en Zona Franca La Lima, finalista en la categoría HVAC de los CALA Awards 2025
El proyecto de sistema de climatización llevado a cabo por MultiFRIO para la empresa Concord en la Zona Franca La Lima, en Cartago, recibió el premio final en la categoría HVAC de los CALA Awards...

Proyecto de climatización en la Universidad Santiago de Cali, finalista en la categoría CALA AWARDS HVAC
El proyecto de aire acondicionado del Edificio Auditorio y del Centro Tecnológico del nuevo campus de la Universidad Santiago de Cali fue elegido como finalista en la categoría HVAC de los CALA...