Select your language

Refrigerants will be replaced by air, Korean researchers say

International. The Korea Energy Research Institute has developed a new concept of refrigeration and freezing technology that uses air as a refrigerant, replacing conventional high-GWP refrigerants.

Researchers have successfully developed an ultra-high-speed integrated compression and expansion system, which combines a compressor and an expander, using advanced design technology. - The system is capable of cooling down to -100 degrees Celsius, so it is expected to have wide applications in semiconductor processes, biotechnology, pharmaceutical storage, and more.

The Korea Energy Research Institute (KIER) has developed, for the first time in the country, a refrigeration technology that uses air as a refrigerant instead of freon gas, hydrofluorocarbons (HFCs) and other refrigerants that cause global warming.

In March this year, the European Union's new regulations on fluorinated greenhouse gases (F-gases) came into force. From 2025, sales of products containing F-gases will be phased out. In addition, it is expected that the rules on processes using F-gases will be strengthened. Since F-gases are used in Korea's key export products, such as air conditioners, automobiles, and semiconductor processes, there is an urgent need to develop alternative technologies.

- Publicidad -

The research team successfully developed an integrated ultra-high-speed compressor-expander that is used in air cooling, and for the first time in Korea, created an air cooling system. With this system, it is possible to reach an ambient temperature of -60 degrees Celsius using air as a refrigerant.

Traditional refrigeration and cooling systems have mainly used the vapor compression cycle. In this method, cooling is achieved as the liquid refrigerant evaporates and absorbs heat. Due to its simple structure and design, it is widely used in various fields. However, a key drawback is their reliance on fluorinated greenhouse gases as refrigerants, which generates the impact of global warming.

In response to this, the research team focused on implementing a refrigeration system based on the reverse Brayton cycle, which uses air as a refrigerant. Unlike the traditional method that involves evaporating a liquid, this system compresses a gas and then goes through heat exchange and expansion to produce a gas at a low temperature, allowing cooling without the need for liquid refrigerants. However, the complexity of designing and building such a system has been a major challenge, preventing its application in refrigeration systems until now. The expander must be designed with extreme precision due to the ultra-fast speed rotation during the cooling process. For example, the gaps between the components and the shaft offset require a tolerance of 0.1 millimeters.

The reverse Brayton cycle works as follows:

  • Compression: The air is compressed at high temperature and high pressure.
  • Heat exchange: Compressed air passes through a heat exchanger, where it is cooled to a low temperature while maintaining high pressure.
  • Expansion: Cooled and high-pressure air then expands in an expander, reducing it to a low temperature and pressure.
  • Cooling: The cooled air is sent to the required area for cooling.
  • This cycle is repeated to continuously supply cooled air for desired cooling applications.

To implement the reverse Brayton cycle system, the research team designed a compressor-expander system that connects the compressor, expander, and motor on a single shaft. Although the compressor and expander are connected to a single shaft, each device must operate at its own maximum efficiency. In addition, the shaft system design ensures stable operation even at ultra-high rotational speeds, further improving the reliability and performance of the system.

The refrigeration system using the developed compressor-expander managed to cool the air to less than -60 degrees Celsius in just one hour. Notably, by generating cold temperatures below -50 degrees Celsius, the system demonstrated higher cooling efficiency compared to traditional vapor compression systems. In theory, it is capable of cooling down to -100 degrees Celsius, and at that temperature, cooling efficiency is expected to improve by more than 50% compared to vapor compression systems.

- Publicidad -

Dr. Beom Joon Lee, the lead researcher, stated, "Due to environmental regulations, refrigeration systems that primarily use refrigerants with a high global warming potential are rapidly transitioning to the use of eco-friendly refrigerants." He added: "We are currently working to improve the performance of the system to enable the production of cold temperatures below -100 degrees Celsius. We envision this technology being applied in fields that require ultra-low temperatures, such as semiconductor processes, pharmaceuticals, and biotechnology."

Meanwhile, this research was carried out with the support of the Ministry of Science and ICT's "Climate Change Response Technology Development Project" (led by Dr. Beom Joon Lee) and the basic research program of the Korean Energy Research Institute (led by Dr. Hyung-ki Shin).


No comments

• If you're already registered, please log in first. Your email will not be published.

Leave your comment

In reply to Some User
Building Automation Days 2025 in Bogota marks a milestone for the KNX standard in Latin America

Building Automation Days 2025 in Bogota marks a milestone for the KNX standard in Latin America

Colombia. With more than a hundred attendees and the participation of six high-profile exhibitors, Building Automation Days by KNX LATAM, Colombia edition, established itself as the most relevant...

Design Envelope Technology Hits 750 gpm Fire Pump Segment

Design Envelope Technology Hits 750 gpm Fire Pump Segment

Canada. In response to the growing demands of the fire protection industry, Armstrong Fluid Technology announced the expansion of its Vertical-In-Line pump line with the addition of the new 5x4x10PF...

Greenheck Launches New RV-220 Model and Expands Its Line of Dedicated Outdoor Air Systems

Greenheck Launches New RV-220 Model and Expands Its Line of Dedicated Outdoor Air Systems

United States. Greenheck announced the addition of the RV-220 to its line of dedicated outdoor air systems (DOAS), a solution that responds to the growing demand for equipment with greater outdoor...

Embraco enters the HVAC market with new scroll compressors and aims to become a full-service supplier

Embraco enters the HVAC market with new scroll compressors and aims to become a full-service supplier

Brazil. Embraco announced its official entry into the heating, ventilation and air conditioning (HVAC) market following the acquisition of the specialized company Xecom, and the launch of a new line...

SIGMAN GROUP and Carrier-VRF reinforce technical training in the HVAC sector in Ecuador

SIGMAN GROUP and Carrier-VRF reinforce technical training in the HVAC sector in Ecuador

Ecuador. An intensive week of technical and commercial training brought together key players in the HVAC sector in Quito and Guayaquil, thanks to the joint initiative of GRUPO SIGMAN and...

AHR Expo Mexico 2025 returns to Monterrey with its most ambitious edition yet

AHR Expo Mexico 2025 returns to Monterrey with its most ambitious edition yet

Mexico. The event returns this year to Monterrey with an unprecedented edition. The exhibition, dedicated to air conditioning, ventilation, heating, refrigeration and filtration solutions, promises...

Fujitsu Launches New AIRSTAGE Multi-Position Air Handler with R-32 Refrigerant

Fujitsu Launches New AIRSTAGE Multi-Position Air Handler with R-32 Refrigerant

United States. Fujitsu General America announced the launch of its new AIRSTAGE Multi-Position Air Handling Unit (MPAHU), designed to provide greater application flexibility by easily...

HVAC project at the Javeriana University, finalist in the CALA Awards 2025 in the HVAC category

HVAC project at the Javeriana University, finalist in the CALA Awards 2025 in the HVAC category

The HVAC system installed in the building of the Faculty of Sciences of the Pontificia Universidad Javeriana, in Bogotá, was selected as a finalist in the HVAC category of the CALA Awards 2025. The...

Concord Project in La Lima Free Trade Zone, finalist in the HVAC category of the CALA Awards 2025

Concord Project in La Lima Free Trade Zone, finalist in the HVAC category of the CALA Awards 2025

The HVAC system project carried out by MultiFRIO for the company Concord in the La Lima Free Trade Zone, in Cartago, received the final prize in the HVAC category of the CALA Awards 2025, a...

HVAC project at the Universidad Santiago de Cali, finalist in the CALA AWARDS HVAC category

HVAC project at the Universidad Santiago de Cali, finalist in the CALA AWARDS HVAC category

The air conditioning project of the Auditorium Building and the Technology Center of the new campus of the Santiago de Cali University was chosen as a finalist in the HVAC category of the CALA...

Free Subscription
Remember Me
SUBSCRIBE TO OUR NEWSLETTER
DO YOU NEED A SERVICE OR PRODUCT QUOTE?
LASTEST INTERVIEWS
SITE SPONSORS










LASTEST NEWSLETTER
Ultimo Info-Boletin