Select your language

Refrigerants will be replaced by air, Korean researchers say

International. The Korea Energy Research Institute has developed a new concept of refrigeration and freezing technology that uses air as a refrigerant, replacing conventional high-GWP refrigerants.

Researchers have successfully developed an ultra-high-speed integrated compression and expansion system, which combines a compressor and an expander, using advanced design technology. - The system is capable of cooling down to -100 degrees Celsius, so it is expected to have wide applications in semiconductor processes, biotechnology, pharmaceutical storage, and more.

The Korea Energy Research Institute (KIER) has developed, for the first time in the country, a refrigeration technology that uses air as a refrigerant instead of freon gas, hydrofluorocarbons (HFCs) and other refrigerants that cause global warming.

In March this year, the European Union's new regulations on fluorinated greenhouse gases (F-gases) came into force. From 2025, sales of products containing F-gases will be phased out. In addition, it is expected that the rules on processes using F-gases will be strengthened. Since F-gases are used in Korea's key export products, such as air conditioners, automobiles, and semiconductor processes, there is an urgent need to develop alternative technologies.

- Publicidad -

The research team successfully developed an integrated ultra-high-speed compressor-expander that is used in air cooling, and for the first time in Korea, created an air cooling system. With this system, it is possible to reach an ambient temperature of -60 degrees Celsius using air as a refrigerant.

Traditional refrigeration and cooling systems have mainly used the vapor compression cycle. In this method, cooling is achieved as the liquid refrigerant evaporates and absorbs heat. Due to its simple structure and design, it is widely used in various fields. However, a key drawback is their reliance on fluorinated greenhouse gases as refrigerants, which generates the impact of global warming.

In response to this, the research team focused on implementing a refrigeration system based on the reverse Brayton cycle, which uses air as a refrigerant. Unlike the traditional method that involves evaporating a liquid, this system compresses a gas and then goes through heat exchange and expansion to produce a gas at a low temperature, allowing cooling without the need for liquid refrigerants. However, the complexity of designing and building such a system has been a major challenge, preventing its application in refrigeration systems until now. The expander must be designed with extreme precision due to the ultra-fast speed rotation during the cooling process. For example, the gaps between the components and the shaft offset require a tolerance of 0.1 millimeters.

The reverse Brayton cycle works as follows:

  • Compression: The air is compressed at high temperature and high pressure.
  • Heat exchange: Compressed air passes through a heat exchanger, where it is cooled to a low temperature while maintaining high pressure.
  • Expansion: Cooled and high-pressure air then expands in an expander, reducing it to a low temperature and pressure.
  • Cooling: The cooled air is sent to the required area for cooling.
  • This cycle is repeated to continuously supply cooled air for desired cooling applications.

To implement the reverse Brayton cycle system, the research team designed a compressor-expander system that connects the compressor, expander, and motor on a single shaft. Although the compressor and expander are connected to a single shaft, each device must operate at its own maximum efficiency. In addition, the shaft system design ensures stable operation even at ultra-high rotational speeds, further improving the reliability and performance of the system.

The refrigeration system using the developed compressor-expander managed to cool the air to less than -60 degrees Celsius in just one hour. Notably, by generating cold temperatures below -50 degrees Celsius, the system demonstrated higher cooling efficiency compared to traditional vapor compression systems. In theory, it is capable of cooling down to -100 degrees Celsius, and at that temperature, cooling efficiency is expected to improve by more than 50% compared to vapor compression systems.

- Publicidad -

Dr. Beom Joon Lee, the lead researcher, stated, "Due to environmental regulations, refrigeration systems that primarily use refrigerants with a high global warming potential are rapidly transitioning to the use of eco-friendly refrigerants." He added: "We are currently working to improve the performance of the system to enable the production of cold temperatures below -100 degrees Celsius. We envision this technology being applied in fields that require ultra-low temperatures, such as semiconductor processes, pharmaceuticals, and biotechnology."

Meanwhile, this research was carried out with the support of the Ministry of Science and ICT's "Climate Change Response Technology Development Project" (led by Dr. Beom Joon Lee) and the basic research program of the Korean Energy Research Institute (led by Dr. Hyung-ki Shin).


No comments

• If you're already registered, please log in first. Your email will not be published.

Leave your comment

In reply to Some User
Mirage and Conalep Navojoa promote the training of refrigeration and air conditioning technicians

Mirage and Conalep Navojoa promote the training of refrigeration and air conditioning technicians

Mexico. Mirage announced a strategic alliance with the Plantel Conalep Sonora Navojoa to strengthen the training of new technicians in the sector.

New commitment to thermoacoustics for more efficient heat pumps

New commitment to thermoacoustics for more efficient heat pumps

United States. Copeland has invested in BlueHeart Energy, a Dutch startup developing thermoacoustic technology for more efficient and sustainable heat pumps.

Reliable Controls Appoints Sean Roukey as Business Development Executive

Reliable Controls Appoints Sean Roukey as Business Development Executive

International. Reliable Controls has appointed Sean Roukey as its new Business Development Executive for the Northeast United States.

KNX LATAM revolutionizes automation in Latin America with the Virtual Building Automation Days

KNX LATAM revolutionizes automation in Latin America with the Virtual Building Automation Days

Chile. Next Thursday, April 10th, KNX Latin America will hold the Virtual Building Automation Days, registration is free of charge.

GreenYellow and La Fazenda inaugurate a sustainable refrigeration system

GreenYellow and La Fazenda inaugurate a sustainable refrigeration system

Colombia. A new energy-efficient refrigeration system was installed at the La Fazenda refrigeration plant in Puerto Gaitán, Meta.

Officine Mario Dorin announces ambitious expansion plan at its Florence headquarters

Officine Mario Dorin announces ambitious expansion plan at its Florence headquarters

International. Officine Mario Dorin, a refrigeration company, has announced a major expansion plan at its headquarters in Florence, Italy.

Copeland expands its presence in Latin America with a new office in Chile

Copeland expands its presence in Latin America with a new office in Chile

Chile. As part of its regional growth strategy, Copeland has opened a new office in Santiago, Chile, strengthening its presence in the HVACR market.

Environment and UNDP recognize ten women for their contribution to the protection of the ozone layer

Environment and UNDP recognize ten women for their contribution to the protection of the ozone layer

Dominican Republic. Within the framework of International Women's Day, the Ministry of Environment and Natural Resources and the United Nations Development Program (UNDP) highlighted the work of ten...

Register for the Building Automation Webinar: Keys to Understanding Modbus and BACnet

Register for the Building Automation Webinar: Keys to Understanding Modbus and BACnet

International.  On March 27, 2025, ACR Latin America will offer a webinar focused on building automation protocols, with an emphasis on understanding Modbus and BACnet.

Scientists develop the first elastocaloric air conditioner on a commercial scale

Scientists develop the first elastocaloric air conditioner on a commercial scale

International. Researchers at the Hong Kong University of Science and Technology (HKUST) have developed the first elastocaloric air conditioning system with cooling capacity on a commercial scale.

Free Subscription
Remember Me
SUBSCRIBE TO OUR NEWSLETTER
DO YOU NEED A SERVICE OR PRODUCT QUOTE?
LASTEST INTERVIEWS
SITE SPONSORS










LASTEST NEWSLETTER
Ultimo Info-Boletin