Account
Please wait, authorizing ...

Don't have an account? Register here today.

×

Researchers create a black box that absorbs energy from temperature fluctuations

United States. Thermoelectric devices, which can generate power when one side of the device has a different temperature than the other, have been the subject of much research in recent years. Now, a team at MIT has devised a new way to convert temperature fluctuations into electrical energy. Instead of requiring two different temperature inputs at the same time, the new system takes advantage of oscillations in ambient temperature that occur during the day-night cycle.

The new system, called a thermal resonator, could allow continuous operation for years of remote sensing systems, for example, without the need for other power supplies or batteries, according to the researchers.

The findings are being reported in the journal Nature Communications, in a paper written by graduate student Anton Cottrill, Carbon P. Dubbs Professor of Chemical Engineering Michael Strano, and seven others in MIT's Department of Chemical Engineering.

"Basically, we invented this concept out of thin air," Strano says. "We have built the first thermal resonator. It's something you can sit at a desk and generate power from what seems like nothing. We are surrounded by temperature fluctuations of all different frequencies all the time. These are an untapped energy source."

- Publicidad -

While the power levels generated by the new system so far are modest, the advantage of the thermal resonator is that it does not need direct sunlight; it generates energy from changes in ambient temperature, even in the shade. That means it is not affected by short-term changes in cloud cover, wind conditions or other environmental conditions, and can be located anywhere that is convenient, even under a solar panel, in perpetual shade, where it could even allow the solar panel more efficient at removing waste heat, say researchers.

The thermal resonator has been shown to outperform a commercial pyroelectric material of identical size, an established method for converting temperature fluctuations into electricity, by a factor of more than three in terms of power per area, according to Cottrill.

The researchers realized that to produce energy from temperature cycles, they needed a material optimized for a little-recognized feature called thermal effusivity, a property that describes how easily the material can extract heat from its environment or release it. Thermal effusivity combines the properties of thermal conduction (how quickly heat can be propagated through a material) and thermal capacity (the amount of heat that can be stored in a given volume of material). In most materials, if one of these properties is high, the other tends to be low. Ceramics, for example, have a high thermal capacity but low conduction.

To avoid this, the team created a carefully designed combination of materials. The basic structure is a metal foam, made of copper or nickel, which is then coated with a layer of graphene to provide even greater thermal conductivity. The foam is then infused with a type of wax called octadecan, a phase-change material, which switches between solid and liquid within a particular temperature range chosen for a given application.

A sample of the material made to test the concept showed that, simply in response to a temperature difference of 10 degrees Celsius between night and day, the small sample of material produced 350 millivolts of potential and 1.3 milliwatts of power, enough to power small environmental sensors or communications systems.

Essentially, Strano explains, one side of the device captures heat, which then slowly radiates to the other side. One side always lags behind the other when the system tries to reach equilibrium. This perpetual difference between the two sides can be harvested through conventional thermoelectric. The combination of the three materials ( metal foam, graphene and octadecan) makes it "the highest thermal effusion material in the literature to date," Strano says.

While the initial test was performed using the daily 24-hour ambient air temperature cycle, adjusting the material properties could allow harvesting other types of temperature cycles, such as heat from the engines' on/off cycle. in a refrigerator, or machinery in industrial plants.

- Publicidad -

Source: MIT.

Duván Chaverra Agudelo
Author: Duván Chaverra Agudelo
Jefe Editorial en Latin Press, Inc,.
Comunicador Social y Periodista con experiencia de más de 16 años en medios de comunicación. Apasionado por la tecnología y por esta industria. [email protected]

No thoughts on “Researchers create a black box that absorbs energy from temperature fluctuations”

• If you're already registered, please log in first. Your email will not be published.

Leave your comment

In reply to Some User
Free Subscription
SUBSCRIBE TO OUR NEWSLETTER
DO YOU NEED A SERVICE OR PRODUCT QUOTE?
LASTEST INTERVIEWS

Entrevista a Jaime Maldonado, Presidente de Air-Con Inc

En entrevista con ACR Latinoamérica, Jaime Maldonado, Presidente de Air-Con Inc, destacó los proyectos que tiene la compañía para este año 2024, sobre todo con la transición de los nuevos refrigerantes. Además, Air-Con estará como expositor en Refriaméricas Miami, y Jaime nos habló sobre sus expectativas con el evento y lo que darán a conocer para todos los visitantes.

Webinar: Armstrong y Energía de Distrito

Por: Rafael Behar, Gerente de Apoyo de Aplicación, Armstrong Fluid Technology Los sistemas de energía de distrito se caracterizan por una o más plantas centrales que producen agua caliente, vapor y/o agua fría, que luego fluye a través de una red de tuberías aisladas para proporcionar agua caliente, calefacción y/o aire acondicionado a los edificios cercanos. Los sistemas de energía de distrito sirven a una variedad de mercados de uso final, incluidos los centros de las ciudades (distritos comerciales centrales), campus universitarios, hospitales e instalaciones de atención médica, aeropuertos, bases militares y complejos industriales. Al combinar cargas para múltiples edificios, los sistemas de energía urbana crean economías de escala que ayudan a reducir los costos de energía y permiten el uso de tecnologías de alta eficiencia. En este seminario web vamos a introducir a Armstrong Fluid Tecnología y su dirección para la energía urbana con enfoques en plantas de calefacción. https://www.acrlatinoamerica.com/20...

Webinar: Mejores Practicas para la Optimización de Sistemas

Importancia de la correcta automatización de plantas de agua helada con el objetivo de pasar al siguiente nivel, que es la optimización de los sistemas para obtener una mayor eficiencia energética y ahorro del costo operativo y de mantenimiento. Por: Camilo Olvera Rodríguez, Gerente de Ventas - México, ARMSTRONG FLUID TECHNOLOGY https://www.acrlatinoamerica.com/20...

Webinar: Enfriando el futuro: Las nuevas tendencias en refrigerantes para supermercados y almacenes

https://www.acrlatinoamerica.com/20... Únete a nosotros en este emocionante Webinar sobre las últimas tendencias en refrigerantes para supermercados y almacenes. Descubre cómo mantener tus productos frescos de manera eficiente, mientras contribuyes a la sostenibilidad y cuidado del medio ambiente. En esta sesión, exploraremos las innovaciones más recientes en refrigerantes ambientalmente preferibles, incluyendo tecnologías avanzadas de enfriamiento. Aprenderás sobre las ventajas de adoptar estas nuevas soluciones, no solo en términos de eficiencia energética, sino también en la reducción de emisiones y el cumplimiento de regulaciones ambientales. Por: Guillermo Brandenstein, Sr Account Manager - Honeywell

Webinar: ¿Es adecuada la forma de vender en las empresas HVAC/R?

En esta presentación se tratarán puntos neurálgicos sobre cómo lograr vender sin necesidad de licitar, teniendo muy presente que el cliente no nos compre porque somos los más baratos sino porque somos su mejor opción. Por: Ing. Rolando Torrado, CEO - Rolando Torrado https://www.acrlatinoamerica.com/20...
Load more...
SITE SPONSORS










LASTEST NEWSLETTER
Ultimo Info-Boletin